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Abstract. It is shown that the diffraction of the Conway-Radin pinwheel tiling is

circularly symmetric, by explicitly computing the autocorrelation and its Fourier

transform.

1 Introduction

The pinwheel tiling was first conceived as a substitution tiling by John H. Con-
way. Charles Radin later developed the matching rules that determine the same
structure [9]. It is an aperiodic tiling of the plane by 1 : 2 :

√
5 right triangles and

may be constructed by iterating the following substitution rule:
The substitution consists of a standard type of inflation and subdivision rule,

and also a second step: a rotation through the angle ω := − arctan 1
2 that aligns

the new central triangle with the original tile. This extra step allows repeated
applications of the substitution to accumulate into a full tiling that is a fixed
point of the substitution.

What makes the pinwheel tiling interesting is that it exhibits tiles of infinitely
many orientations, and hence is composed of infinitely many types of tiles in the
sense of translational symmetry. In fact its orientations are uniformly distributed
over the unit circle (Theorem 3.1). Thus the well-developed theory of tiles and
point sets which are of finite local (translational) complexity breaks down. In
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Figure 1: The pinwheel substitution. The figure also indicates the positions of the
corresponding control points. The positions of the control points of the full tiling
is the set Λ.

particular, the diffraction of the pinwheel tiling (say of its vertices or of control
points, one from each tile) is still unknown, even qualitatively.

Progress has been especially hampered by the fact that the number of ori-
entations of the pinwheel grows only linearly in the number of substitutions while
the number of tiles is growing exponentially. Thus images derived from computa-
tion of the diffraction or autocorrelation turn out to be totally unrepresentative
of what is actually happening in the limit.

In this paper, we prove that the diffraction of the pinwheel tiling is circu-
larly symmetric. We do this by explicitly working with the autocorrelation and
showing that it, and hence also its Fourier transform (which is by by definition
the diffraction), converges to a circularly symmetric measure. This process gives
some interesting insights as to how the autocorrelation is built out of successive
iterations and how the uniform distribution enters into proving its circular sym-
metry. The result effectively reduces further investigation of the analysis of the
pinwheel diffraction to a 1-dimensional problem of the radial autocorrelation. We
point out alternative approaches to proving circular symmetry in the last section
of the paper.

2 Control Points and the Pinwheel Tiling as a Point Substitution

It is convenient from the point of view of notation and calculation to identify R2

with the complex plane C. Thus let Γ0 be the 1 : 2 :
√

5 right triangle with vertices
−1−i

2 , 1−i
2 , and −1+3i

2 . The pinwheel tiling Γ is obtained by iteratively applying
the substitution seen in Figure 1 to Γ0 infinitely many times. Γn denotes the set
of 5n tiles obtained by iterating the substitution n times. Tiles that differ from Γ0

by a Euclidean motion are said to have positive chirality; those that differ by a
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Eucidean motion and a reflection possess negative chirality.
Let γ be any tile in Γ. Let u be the vertex at the right angle of γ and let v

be the other terminal vertex of the short leg. We define the orientation of γ to be
θα := v − u = eiα, where α is the angle that the short leg makes to the positive
x-axis. Note that θα is an element of U(1) :=

{
z
∣∣ z ∈ C, |z| = 1

}
, the group of

rotations around 0 in the plane.
Following [9] we locate a specific distinguished point within a pinwheel tile:

if u and v are the vertices defined above and w is the remaining vertex, then the
distinguished point of a tile γ is located at x = u+2v+w

4 . Notice that 0 is the
control point of Γ0 and that 0 occupies the same relative position with respect to
the vertices in every supertile Γn. It is this property that determines this choice
of control points, for it allows us to replace the tiling substitution by a point
substitution (see Definition 2.2).

All of the information of a tile γ is encapsulated in its distinguished point,
orientation, and chirality, which motivates the following definition:

Definition 2.1 Let γ be any tile in Γ. The control point of γ is a triple (x, θα, χ)
consisting of the distinguished point x of γ, the orientation of γ, and the chirality
of γ (±1) respectively.

The set of all control points in Γ is denoted by Λ and the set of the control
points of Γn is Λn. By Λ+, Λ− we mean the subsets of Λ comprised of the control
points of positive and negative chirality, respectively.

Definition 2.2 The pinwheel substitution is given by:

(x , θα , χ) 7→



(
√

5θωx , θα+ω−χω , χ)
(θα+ω−χω+ χπ

2
+
√

5θωx , θα+ω−χω+π , χ)
(2θα+ω−χω+ χπ

2
+
√

5θωx , θα+ω−χω+π ,−χ)
(θα+ω−χω+π +

√
5θωx , θα+ω−χω+π ,−χ)

(θα+ω−χω−χπ
2

+
√

5θωx , θα+ω−χω−χπ
2

,−χ) .

By infinitely iterating the above substitution on the set starting with the
single element Λ0 = (0 , θ0 , 1) we generate Λ. Note that we arbitrarily started with
a tile of positive chirality; we could just as easily have used a negative chirality
tile. If we repeated the above arguments for the tile Γ0 (which is the mirror image
of Γ0 in the x-axis), we would obtain a tiling that is a mirror image of the pinwheel
tiling. This process would also involve the creation of a mirror substitution. We
will use the mirror iterates Vn := Λn in Section 4.2.

In passing we note that it is easy to see that knowing the positions of the
control points allows reconstruction of the tiling. It is also the case that knowledge
of the positions of the triangles of one chirality determine the positions of the
triangles of the other [8].
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3 Uniform Distribution of Orientations

Since there is an exact copy of Λk in Λk+1 we can define two sequences of angles
{αi}∞i=1, {βi}∞i=1 ⊆ [0, 2π) such that for any k, θα1 , . . . , θαmk

are the orientations
of the χ = 1 points in Λk and θβ1 , . . . , θβnk

are the orientations of the χ = −1

points. mk := 5k+(−1)k

2 , nk := 5k−(−1)k

2 are the number of chirality 1, -1 points in
Λk respectively.

We fix such a sequence for the remainder of the paper.
A key property of the pinwheel tiling is the uniform distribution of the orien-

tations of the tiles [10], in other words the uniform distribution of the two sequences
that we have just defined. For the convenience of the reader we provide a short
proof of this.

Recall that a sequence {zn}∞n=1 ⊂ U(1) is uniformly distributed on U(1) if

lim
N→∞

1
N

N∑
n=1

f(zn) =
∫

U(1)

f(z)dλU(1)(z) = λU(1)(f)

for all f : U(1) → C continuous (λU(1) is normalized Haar measure on U(1)).
We say that a sequence {γj}∞j=1 ⊂ [0, 2π) is uniformly distributed modulo 2π if
{eiγj}∞j=1 is uniformly distributed on U(1).

Define

M(t) :=
(

eit0 + eitπ 2eit(2ω−π) + eit(2ω+ π
2 )

2eit(π) + eit(−π
2 ) eit(2ω) + eit(2ω−π)

)
(3.1)

for all t ∈ Z.
If the indices 1 (respectively 2) refer to the tiles of positive (respectively

negative) chirality then (M(1))jk is the sum of the orientations of the type j

tiles obtained after applying the pinwheel substitution to a single type k tile with
orientation 1. Then

(M(t))k =


mk∑
j=1

eitαj

nk∑
j=1

eit(2kω−βj)

nk∑
j=1

eitβj

mk∑
j=1

eit(2kω−αj)


follows immediately from the definition of M(t) and the pinwheel substitution. 3

3This matrix is similar to the matrix used in [10], [11]. The primary difference comes from the

fact that Radin rotates Λn at every step so that, considered as one big triangle, it has orientation

θ0. We must use the above matrix in place of Radin’s because of our requirement that we work

with a fixed point substitution. Also, Radin’s type 1 tile corresponds to what we have chosen to

be our type 2 tile and vise versa.
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Theorem 3.1 (Radin) {αn}n and {βn}n are uniformly distributed.

Proof: By the well-known Weyl criterion a sequence {zn}∞n=1 ⊂ U(1) is uniformly
distributed if and only if for all t ∈ Z \ {0}

lim
N→∞

1
N

N∑
n=1

(zn)t = 0 .

Since lim
k→∞

mk

5k
= lim

k→∞

nk

5k
=

1
2
, it will be enough to prove that, for all t 6= 0, 1 ≤

i, j ≤ 2

lim
k→∞

((M(t))k)ij

5k
= 0 .

Let t 6= 0 be arbitrary but fixed. Let A be the matrix defined by Aij =

|(M(t))ij |. Then 0 < A ≤
(

2 3
3 2

)
in an entrywise sense, with the additional

restriction A 6=
(

2 3
3 2

)
. Also |((M(t))k)ij | ≤ (Ak)ij for all k, i, j. Let λ be the

Perron-Frobenius eigenvalue of A. Then, by the Perron-Frobenius Theorem λ < 5,

since 5 is the PF eigenvalue of
(

2 3
3 2

)
. Furthermore there exists a constant c

such that for all n > 0, (An)ij

λn ≤ c. Then∣∣∣∣ ((M(t))k)ij

5k

∣∣∣∣ ≤ (Ak)ij

5k
=

(Ak)ij

λk
·
(

λ

5

)k

≤ c ·
(

λ

5

)k
k→0−→ 0 ,

since λ
5 < 1. Hence, the desired result follows. �

4 Autocorrelation of the Pinwheel Tiling

4.1 Introduction to the Autocorrelation and Some Notation

Let M∞((0,∞)) be the subspace of translation bounded 4 regular Borel measures
which are supported on (0,∞) and let M(R2) denote the space of all regular Borel
measures on R2.

Let P := C\{0}, the punctured complex plane and letM∗
pp(P) :=

{ n∑
k=1

ckδak

∣∣
ck ∈ R, n ≥ 0, ak ∈ P

}
be the span of all real finitely supported measures on P.

For any α ∈ [0, 2π), we let R(α) : P → P be rotation through angle α:
R(α)(z) := eiαz. Let σ be the operation of reflection in the x-axis: σ(z) = z .

4A measure ν ∈ M(R2) is translation bounded if for all compact K ⊂ R2 there exists c > 0

such that |ν|(a + K) < c for all a ∈ R2.
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Both these types of operations extend to functions and to measures; in particular
R(α) and σ act naturally on M∗

pp(P) : R(α)(
∑n

k=1 ckδak
) =

∑n
k=1 ckδR(α)(ak),

σ(
∑n

k=1 ckδak
) =

∑n
k=1 ckδak

We let Cc(R2) denote the space of all continuous compactly supported real-
valued functions on R2.

Let λR2
be Lebesgue measure on R2, λU(1) the normalized Haar measure on

U(1), and δz be the Dirac measure supported at z ∈ R2.
A sequence of measures {µn}n ⊂ M(R2) converges vaguely to µ ∈ M(R2)

if, for all f ∈ Cc(R2), {µn(f)}n
n→∞−→ µ(f).

Definition 4.1 The averaged autocorrelation of Λn is

ηn :=
1
5n

∑
x,y∈Λn

δx−y .

The averaged autocorrelation of Λ is the vague limit η := lim
n→∞

ηn , if it exists.5

Remark: In defining autocorrelation, one is faced with choosing an averaging se-
quence, a sequence of compact sets (on which the sums involved are finite) and
then taking limits, just as we have done here. For technical reasons, such sequences
are chosen to satisfy the van Hove property:

Definition 4.2

(i) For any A ⊂ R2 and K ⊂ R2 compact, the K-boundary of A is

∂K(A) := ((K + A)\A◦) ∪ ((−K + R2\A) ∩A),

where ◦ and denote interior and closure, respectively.

(ii) A van Hove sequence is a sequence of compact subsets {An}n ⊂ Rd such
that

λR2
(∂K(An))

λR2(An)
n→∞−→ 0, for all K compact.

In defining the averaged autocorrelation we have used the sequence {Γn}∞n=1 as
our averaging van Hove sequence. In Section 5 we will see that we can in fact use
any van Hove sequence.

5Throughout this section, we will almost exclusively understand Λ to represent only the

locations of the control points, which are points of C ' R2.
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4.2 Substitution Formulation for Measures

The primary objective of this section is to verify that η is circularly symmetric. The
pinwheel substitution of Definition 2.2 involves complication-causing reflections
that we prefer to avoid. Imagine that each tile of some finite part of the pinwheel
tiling carries some measure and we are interested in the total sum ν of these
measures. We break this total measure into two pieces ν+ and ν−, with ν+ carrying
the total measure of the positive chirality tiles and ν− carrying the measure of
the negative chirality tiles after they have been reflected in the x-axis. Thus ν =
ν+ + σν−, but rather than this sum we work with the matrix(

ν+

ν−

)
.

In this scheme all measures lie on tiles of positive chirality and the process of
reflection can then be relegated to a single operation at the very end that brings
the second measure into the correct position. Figure 2 illustrates the formalism as
it appears in the substitution process.

Once we have established our formalism, we will use it to generate the ηn.
By letting n →∞, we achieve the desired result.

Definition 4.3 Let Ω,Φ : (M∗
pp(P))2 → (M∗

pp(P))2 be linear maps defined by:

Ω
(

µ

ν

)
:=

(
R(−ω) 0

0 R(ω)

)(
µ

ν

)
Φ
(

µ

ν

)
:=

1
5

(
R(0) + R(π) 2R(π) + R(−π

2 )
2R(−π) + R(π

2 ) R(−0) + R(−π)

)(
µ

ν

)
Θ
(

µ

ν

)
:=

(
id σ

)( µ

ν

)
= µ + σν

Definition 4.4 For any k ≥ h ≥ 1, define the linear map Ψk
h : (M∗

pp(P))2 →
(M∗

pp(P))2 by:

Ψk
h

(
µ

ν

)
:= Ω−kΦΩkΩ−(k−1)ΦΩk−1 . . .Ω−hΦΩh

(
µ

ν

)
.

If we define Ψm
h to be the identity map whenever m < h, then we have Ψk

h

(
µ

ν

)
=

Ψk
l Ψl−1

h

(
µ

ν

)
for k ≥ l ≥ h ≥ 1. This decomposition of Ψk

h will feature in several

induction arguments.
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Proposition 4.5 For any k ≥ h ≥ 1,

Ψk
h

(
µ

ν

)
=

1
5k−(h−1)


mk−(h−1)∑

j=1

R(αj)
nk−(h−1)∑

j=1

R(2hω + βj)

nk−(h−1)∑
j=1

R(−2hω − βj)
mk−(h−1)∑

j=1

R(−αj)


(

µ

ν

)
.

Proof (by induction on k): Fix an arbitrary h ≥ 1 for the remainder of this proof.
k = h:

Ψh
h

(
µ

ν

)
= Ω−hΦΩh

(
µ

ν

)

=
1
5

(
R(0) + R(π) 2R(2hω + π) + R(2hω − π

2 )
2R(−2hω − π) + R(−2hω + π

2 ) R(−0) + R(−π)

)(
µ

ν

)
.

Induction step: Ψk+1
h

(
µ

ν

)
= Ψk+1

k+1Ψ
k
h

(
µ

ν

)
. We know what Ψk+1

k+1 looks like

from our base case above, and we have Ψk
h by the induction hypothesis. Because of

the symmetry of the Ψ matrices, it is sufficient to consider (Ψk+1
h )11 and (Ψk+1

h )12:

(Ψk+1
h )11 = (R(0) + R(π))

mk−(h−1)∑
j=1

R(αj)

+(2R(2(k + 1)ω + π) + R(2(k + 1)ω − π

2
)

nk−(h−1)∑
j=1

R(−2hω − βj)

=
mk−(h−1)∑

j=1

R(αj) +
mk−(h−1)∑

j=1

R(αj + π) +
nk−(h−1)∑

j=1

2R(2(k − (h− 1))ω − βj + π)

+
nk−(h−1)∑

j=1

R(2(k − (h− 1))ω − βj −
π

2
) =

m(k+1)−(h−1)∑
j=1

R(αj) .

For help visualizing this argument, see Figure 2. The argument for (Ψk+1
h )12

is similar. �
Now that we understand Ψk

h in terms of our sequences of angles, we can put
the uniform distribution result to good use.

Proposition 4.6 For any u ∈ P and uniformly distributed sequence {zn}∞n=1 ⊂ U(1)
we have:

lim
N→∞

1
N

N∑
n=1

R(zn)δu = λU(1) ⊗ δ|u| ,

where the limit is in the vague topology.
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Proof: Note that the product of measures above refers to the product decomposi-
tion P = U(1)× R>0.

Let f be any continuous compactly supported C-valued function on P. We
are required to show that

lim
N→∞

〈
1
N

N∑
n=1

R(zn)δu, f

〉
= 〈λU(1) ⊗ δ|u|, f〉 .

We have〈
1
N

N∑
n=1

R(zn)δu, f

〉
=

1
N

N∑
n=1

〈δu, R(zn)−1f〉 =
1
N

N∑
n=1

∫
P

f(znx) dδu(x)

=
1
N

N∑
n=1

f(znu) N→∞−→
∫

U(1)

f(zu)dz =
∫

U(1)

f(z |u|)dz

=
∫

U(1)×R>0

f(zr) dλU(1)(z)⊗ δ|u|(r) = 〈λU(1) ⊗ δ|u|, f〉

�
Remark: Note that measures of the form λU(1) ⊗ σ, where σ is a positive mea-
sure on K ⊂ (0,∞), are not what one may intuitively think from the perspec-
tive of usual Lebesgue measure on R2. For example, consider that ‖λU(1) ⊗ σ‖=
λU(1)(U(1))σ(K) = σ(K). This is independent of where K lies in (0,∞). The
Lebesgue measure of BK = U(1) ×K ⊂ R2 (see Equation (4.3)) is its area, and
hence depends on where K is located.

Definition 4.7 Let P : P → (0,∞) be defined by P (z) := |z|. Then P determines a
linear map (also denoted by P) from M∗

pp(P) to M∞((0,∞)) by P (
∑n

k=1 ckδak
) :=∑n

k=1 ckδP (ak) .

Corollary 4.8 For all µ, ν ∈M∗
pp(P),

Ψk
h

(
µ

ν

)
k→∞−→ 1

2

(
λU(1) ⊗ (P (µ + ν))
λU(1) ⊗ (P (µ + ν))

)
in the vague topology.

Proof: The combination of Propositions 4.5 and 4.6 yields

Ψk
h

(
δx

δy

)
k→∞−→ 1

2

(
λU(1) ⊗ δ|x| + λU(1) ⊗ δ|y|
λU(1) ⊗ δ|x| + λU(1) ⊗ δ|y|

)
for any h ≥ 1. Since µ, ν are finite linear combinations of deltas, the desired result
follows by linearity. �
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4.3 The Autocorrelation of the nth Iterate

We recall that Λn consists of 5 isometrical copies of Λn−1. Let n ≥ 1. We define

Dn :=
{
(x, y) ∈ Λ× Λ

∣∣ x, y ∈ Λn and are in different copies of Λn−1

}
,

Cn :=
{
(x, y) ∈ Λ× Λ

∣∣ x, y ∈ Λn, x 6= y, and are in the same copy of Λn−1

}
.

(4.1)

Then
ηn = δ0 +

1
5n

∑
x,y∈Cn

δx−y +
1
5n

∑
x,y∈Dn

δx−y . (4.2)

Because the minimum distance between pinwheel control points is 1√
5
, there exists

1√
5

> r > 0 such that ηn|Br(0) = δ0. For such an r, lim
n→∞

ηn|Br(0) = δ0. In other
words, 0 is separated from the rest of the support of η.

For any K bounded in (0,∞), we define

BK :=
{
a ∈ P

∣∣ |a| ∈ K
}

= P−1(K), (4.3)

the K-corona around 0, whose intersection with the positive x axis is K.
For any µ, ν ∈M∗

pp(P), we have:

(i) µ(BK) = P (µ)(K),

(ii) Ψk
h

(
µ

ν

)
(BK) =

1
5k−(h−1)

(
mk−(h−1)µ(BK) + nk−(h−1)ν(BK)
nk−(h−1)µ(BK) + mk−(h−1)ν(BK)

)
.

It is immediate that:

Lemma 4.9 For all ν, ν′ ≥ 0, we have

Ψk
h

(
ν

ν′

)
(BK) ≤

(
ν(BK) + ν′(BK)
ν(BK) + ν′(BK)

)
.

�

Definition 4.10

(i) ρn :=
1
5n

∑
x,y∈Dn

δx−y .

(ii) η+
n , η−n are defined recursively as follows:

η+
1 = η−1 := 0 ,(

η+
n

η−n

)
:= Ψn−1

n−1

(
η+

n−1 + ρn−1

η−n−1

)
.
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By a standard induction argument, we get(
η+

n

η−n

)
=

n−1∑
k=1

Ψn−1
n−k

(
ρn−k

0

)
for all n ≥ 2 . (4.4)

Proposition 4.11 For any n ≥ 1 we have

ηn = δ0 + η+
n + ση−n + ρn . (4.5)

Proof: To see that equation (4.5) holds, by (4.2) we must prove that

η+
n+1 + ση−n+1 =

1
5n+1

∑
(x,y)∈Cn+1

δx−y .

We prove this by induction. Figure 2 may help clarify the following argument.
n = 0: C1 = ∅; η+

1 = 0, η−1 = 0, which gives us our desired equality.
Induction step: Λn+1 consists of the union of the five disjoint copies of Λn resulting
from the application of the mappings f1, . . . , f5 upon Λn. Here f1, f2 are direct
isometries of C, while f3, f4, f5 are opposite (i.e., chirality reversing) isometries of
C (note that the translation and reflection components of these isometries depend
on n, while the rotation components are independent of n). Then,

Cn+1 =
{
(x, y) ∈ Λ×Λ

∣∣ ∃ 1 ≤ i ≤ 5 and (a, b) ∈ Λn×Λn with a 6= b

such that (x, y) = (fi(a), fi(b))
}

, so

The translation part of fi cancels when we take differences:

1
5n+1

∑
(x,y)∈Cn+1

δx−y =
1
5
(R(0) + R(π))

( 1
5n

∑
x,y∈Λn
x6=y

δx−y

)

+
1
5
R(nω)

(
2R(π) + R(−π

2
)
)

σR(−nω)
( 1

5n

∑
x,y∈Λn
x6=y

δx−y

)
.

Now, by the induction hypothesis:

1
5n

∑
x,y∈Λn
x6=y

δx−y = ηn − δ0
(3.2)
= η+

n + ρn + ση−n .
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Figure 2: Successive powers of Ψ build up sums of rotation operators which we
ultimately apply to measures. Rather than carrying two chiralities in one plane,
we prefer to work with one chirality (namely, +1) in two planes. These two planes
are represented here by the half planes above and below the x-axis respectively.
It is to be understood that the full chiral picture is obtained by reflecting the
lower half plane onto the upper through the x-axis. The rotations involved are
indicated here by the orientation of the triangles which we see being built up by
the substitution. After reflection, the upper and lower pictures fit together to give
the full substitution.
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Therefore,

1
5n+1

∑
(x,y)∈Cn+1

δx−y =
1
5
(R(0) + R(π))(η+

n + ρn + ση−n )

+
1
5
R(nω)(2R(π) + R(−π

2
))σR(−nω)(η+

n + ρn + ση−n )

=
1
5

(
(R(0) + R(π))(η+

n + ρn) + σ(R(−0) + R(−π))η−n

+σ(2R(−2nω − π) + R(−2nω +
π

2
))(η+

n + ρn)

+(2R(2nω + π) + R(2nω − π

2
))η−n

)
= η+

n+1 + ση−n+1

by Definition 4.10. �

1
5n+1

∑
(x,y)∈Cn+1

δx−y =
1
5

5∑
i=1

1
5n

∑
x,y∈Λn
x6=y

δfi(x)−fi(y) .

4.4 Convergence and Circular Symmetry

Definition 4.12 µn,K := P (ηn|BK
) ∈M∞((0,∞)) for some K ⊂ (0,∞) bounded.

Proposition 4.13 Let K ⊆ (0,∞) be any bounded set. Then {µn,K}∞n=1 converges
in the total variation norm topology to a pure point measure.

Proof: By Definition 4.12 and Proposition 4.11, we get

µn+1,K = P (ηn+1|BK
) = P (η+

n+1|BK
) + P (η−n+1|BK

) + P (ρn+1|BK
).

Note that P (η−n+1) = P (ση−n+1).
By a remark following Equation (4.3), if K ′ ⊆ K is any set we have(

η+
n+1(BK′)

η−n+1(BK′)

)
=

1
5

(
2η+

n (BK′) + 2ρn(BK′) + 3η−n (BK′)
3η+

n (BK′) + 3ρn(BK′) + 2η−n (BK′)

)
,

whence

P (η+
n+1)(K

′) + P (η−n+1)(K
′) = η+

n+1(BK′) + η−n+1(BK′)

= η+
n (BK′) + η−n (BK′) + ρn(BK′) = ηn(BK′) = P (ηn)(K ′) .

Thus, for all K ′ ⊆ K we have P (η+
n+1)(K

′) + P (η−n+1)(K
′) = P (ηn)(K ′).

Hence,

P (η+
n+1|BK

) + P (η−n+1|BK
) = P (η+

n+1)|K + P (η−n+1)|K
= P (ηn)|

K
= P (ηn|BK

) = µn,K . (4.6)
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So we get
µn+1,K = µn,K + P (ρn+1|BK

) .

Therefore, µn+1,K ≥ µn,K and

‖µn+1,K − µn,K‖ = ρn+1(BK) =
1

5n+1
card

{
(x, y) ∈ Dn+1

∣∣ |x− y| ∈ K
}
.

Because x, y must be in different copies of Λn, x must be in the BK-boundary of
one of those copies and y ∈ x + BK . Let c := max

a∈C
(card{Λ ∩ (a + BK)}), a finite

quantity because the minimum distance between control points is 2√
5
. Then,

card
{
(x, y) ∈ Dn+1

∣∣ |x− y| ∈ K
}
≤ c ·

5∑
j=1

card
{
x ∈ Λ ∩ ∂BK (fjΓn)

}
.

When we inflate Γn we have λR2
(∂BK Γn+1) '

√
5λR2

(∂BK Γn), since the
linear scaling is by

√
5.

Therefore, ∃ a constant c′ depending only on K such that

ρn+1(BK) ≤ c′
(

1√
5

)n+1

. (4.7)

Then ‖µm,K−µn,K‖ ≤ c′
∑m

j=n+1(
1√
5
)j shows that {µn,K}n is Cauchy in the total

variation norm. By a comment following Proposition 3 of [1], {µn,K}n converges
in the total variation norm topology to a pure point measure. �

Definition 4.14 µK := lim
n→∞

µn,K is a pure point measure on (0,∞).

Proposition 4.15 ηn|BK
−→ λU(1) ⊗ µK in the vague topology.

Proof: Let ηK = λU(1) ⊗ µK . Let U be any neighbourhood of 0 in the vague
topology. Then ∃V , a neighbourhood of 0, such that V +V +V +V +V +V ⊆ U .
Also, we may assume that V = −V . Since the total variation topology is stronger
than the vague topology, there exists ε > 0 such that whenever ‖ν‖ < ε then
ν ∈ V .

Because µn,K
‖·‖−→ µK , there exists N such that for all n > N , we have

‖µn,K − µK‖ < ε. This gives us ‖λU(1) ⊗ µn,K − λU(1) ⊗ µK‖ < ε, and hence,
λU(1) ⊗ µn,K − ηK ∈ V for all n > N .

(4.7) says that ρn(BK) ≤ c′
(

1√
5

)n

, so ∃M ≥ N + 1 such that

m∑
k=M

ρk(BK) < ε for all m ≥ M. (4.8)
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We know by (4.4) that(
η+

n |BK

η−n |BK

)
=

n−1∑
k=1

Ψn−1
n−k

(
ρn−k|BK

0

)
. (4.9)

Splitting the above sum yields(
η+

n+M |BK

η−n+M |BK

)
−Ψn+M−1

M

(
η+

M |BK

η−M |BK

)
=

n∑
k=1

Ψn+M−1
n+M−k

(
ρn+M−k|BK

0

)
,

and using the triangle inequality gets us∥∥∥∥∥
(

η+
n+M |BK

η−n+M |BK

)
−Ψn+M−1

M

(
η+

M |BK

η−M |BK

)∥∥∥∥∥ ≤
n∑

k=1

∣∣∣∣Ψn+M−1
n+M−k

(
ρn+M−k

0

)∣∣∣∣ (BK)

=
n∑

k=1

Ψn+M−1
n+M−k

(
ρn+M−k

0

)
(BK) ,

where
∥∥∥∥( ν

ν′

)∥∥∥∥ :=
(

‖ν‖
‖ν′‖

)
and ‖ · ‖ is the total variation norm.

Thus, by Lemma 4.9 and (4.8),∣∣∣∣( η+
n+M

η−n+M

)
−Ψn+M−1

M

(
η+

M

η−M

)∣∣∣∣ (BK) <

(
ε

ε

)
. (4.10)

We also know that λU(1) ⊗ µM−1 − ηK ∈ V . From Corollary 4.8 and the fact that
M is fixed, we know

Ψn+M−1
M

(
η+

M |BK

η−M |BK

)
n→∞−→ 1

2

(
λU(1) ⊗ P (η+

M |BK
+ η−M |BK

)
λU(1) ⊗ P (η+

M |BK
+ η−M |BK

)

)
and so, by (4.6), we get that

Ψn+M−1
M

(
η+

M |BK

η−M |BK

)
n→∞−→ 1

2

(
λU(1) ⊗ µM−1

λU(1) ⊗ µM−1

)
.

Therefore, ∃N ′ such that

Ψn+M−1
M

(
η+

M |BK

η−M |BK

)
− 1

2

(
λU(1) ⊗ µM−1

λU(1) ⊗ µM−1

)
∈
(

V

V

)
for all n ≥ N ′ ,

and by (4.10), we have(
η+

n+M |BK

η−n+M |BK

)
−Ψn+M−1

M

(
η+

M |BK

η−M |BK

)
∈
(

V

V

)
for all n ≥ 0 .
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Combining these, we get(
η+

n+M |BK

η−n+M |BK

)
− 1

2

(
λU(1) ⊗ µM−1

λU(1) ⊗ µM−1

)
∈
(

V − V

V − V

)
for all n ≥ N ′ .

Finally, from Proposition 4.11

ηn+M |BK
− ηK = (η+

n+M |BK
− 1

2
λU(1) ⊗ µM−1) + (η−n+M |BK

− 1
2
λU(1) ⊗ µM−1)

+ (λU(1) ⊗ µM−1 − λU(1) ⊗ µK) + ρn+M |BK

and then (4.8) gives us ‖ρn+M |BK
‖ < ε whence ρn+M |BK

∈ V , by our choice of ε.
Thus

ηn+M |BK
− ηK ∈ V − V + V − V + V + V ⊆ U ,

and therefore ηn|BK
− ηK ∈ U for all n > N ′ + M . �

4.5 Autocorrelation Conclusions

It is easy to see that if K ⊆ K ′ then µK′ |
K

= µK . This allows the following
definition:

Definition 4.16 µ is the pure point measure on (0,∞) defined by µ|
K

= µK for allK
bounded in (0,∞).

From Proposition 4.15 and the fact that lim
n→∞

ηn|Br(0) = δ0 for some suffi-

ciently small r > 0, we get that ηn|{0}∪BK
−→ δ0 + λU(1) ⊗ µ|

K
for all K ⊆ (0,∞)

bounded. This final remark sets us up for the main theorem.

Theorem 4.17 The autocorrelation of Λ, η, exists with respect to {Λn}∞n=1 and
η = δ0 + λU(1) ⊗ µ.

Proof: Suppose that f is an arbitrary real valued continuous function of compact
support. Then, supp(f) ⊆ {0} ∪BK for some bounded K ⊂ (0,∞).

From Proposition 4.15 we have

ηn|{0}∪BK
−→ δ0 + λU(1) ⊗ µK ,

which means
ηn|{0}∪BK

(f) −→ (δ0 + λU(1) ⊗ µK)(f).

Because supp(f) ⊆ {0} ∪BK , this gives us

ηn(f) −→ (δ0 + λU(1) ⊗ µ)(f) ,
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Figure 3: Part of the support of the pinwheel autocorrelation measure η

and finally, by the definition of vague convergence,

ηn −→ δ0 + λU(1) ⊗ µ .

�
Our understanding of the autocorrelation of the pinwheel tiling only lacks

knowledge regarding the pure point measure µ, and hence about the radii and
heights of the circles. In [10], Charles Radin suggests that the support of µ has a
self-similar structure. While we were not able to exploit this observation, it may
prove useful to future pinwheel enthusiasts.

4.6 Diffraction

The diffraction of an object is the Fourier transform of its autocorrelation mea-
sure. One may consult [6], [7] for the diffraction theory and [3] for the theory of
translation bounded measures and their Fourier transforms. Note that ηn, η are all
translation bounded, positive-definite, and positive measures ([2], Proposition 7).

Recall that for all f ∈ Cc(R2) and n ≥ 1, 〈ν̂, f〉 = 〈ν, f̂〉.
Since the Fourier transformation is a homeomorphism on the set of all pos-

itive and positive-definite measures on R2 equipped with the vague topology
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([3],Theorem 4.16), from {ηn}n
n→∞−→ η in the vague topology, we know that {η̂n}n

also converges vaguely as n →∞. Thus the diffraction of the pinwheel tiling is the
Fourier transform of its autocorrelation, η̂ := lim

n→∞
η̂n.

It is easy to check that for R(α) ∈ U(1), f ∈ Cc(R2) we have: (R(α)f̂)(k) =
R̂(α)f(k) and hence, if ν is a Fourier transformable measure and R(α)ν = ν then
ν̂(R(α)f) = ν̂(f). Since the pinwheel autocorrelation is fully circularly symmetric,
so is the diffraction.

From this, we can see that the diffraction may only have a pure point part
at the origin. We show that this is indeed the case.

Proposition 4.18 η̂pp = δ0.

Proof: This result follows from Theorem 2.2 in [7]. We have

lim
n→∞

1
vol(Γn)

∫
1 d(

∑
x∈Λn

δx) = lim
n→∞

card(Λn)
vol(Γn)

= dens(Λ) .

Then, by the result mentioned above, η̂({0}) = (dens(Λ))2 = 1. �

5 van Hove sequences

In the construction of the autocorrelation and the diffraction we have assumed
that the averaging sequence is the ascending chain of super triangles Γn created
by the substitution process itself. In this section we prove that we get the same
autocorrelation (and hence diffraction) for any van Hove sequence A = {Am}.

Proposition 5.1 Let A = {Am} be any van Hove sequence in R2 and let

ηAm
:=

1
vol (Am)

∑
x,y∈Λ∩Am

δx−y (5.1)

be the averaged autocorrelation of Am. Then ηAm
→ η in the vague topology.

Proof: It suffices to take one fixed, but otherwise arbitrary, continuous function f

on R2 of compact support and show that ηAm
(f) → η(f). We assume f 6= 0.

We know that ηn → η = λU(1) ⊗ µ in the vague topology. Since λU(1) ⊗ µ =
σ(λU(1) ⊗ µ), we also have that σηn → η.

Let B be a closed ball around 0 which contains supp(f). Since Rθ(η) = η for
all θ, it follows that Rθηn(f) → η(f) for each θ. Since the mapping (θ, x) 7→ f(Rθx)
is continuous and U(1) × B is compact we see that the convergence to η(f) is
uniform in θ. In the same way Rθ(σηn) → η uniformly for all θ.
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Consider any of the triangles Γn and in particular its inner boundary of width
equal to the diameter of the ball B. Let p(Γn) be the perimeter of Γn. Since Λ is a
Delone set, there is a positive constant cB so that the number of points of Λ inside
this inner boundary is bounded above by cBp(Γn) for all n, no matter where or in
what orientation the triangle Γn is placed in R2. Let nB be the maximum number
of points of Λ inside any translate of B.

Combining all this information, for any ε > 0 we can choose N = N(ε, f) > 0
so that for all θ and for all k ≥ 0 we have simultanously

• |RθηN (f)− η(f)| < ε

• |RθσηN (f)− η(f)| < ε

• cBp(ΓN )nB

vol (ΓN )
||f ||∞ < ε .

Let A be any region of R2 precisely tiled by a subset of the super-tiles ΓN in
the total tiling Γ of R2. Then

A =
M⋃
i=1

TiΓN

where the Ti are composed of Euclidean isometries, and since autocorrelations are
unaffected by translations,∣∣∣∣∣ 1

M

M∑
i=1

ηTiΓN
(f)− η(f)

∣∣∣∣∣ ≤ 1
M

M∑
i=1

|ηTiΓN
(f)− η(f)| ≤ ε . (5.2)

The averaged autocorrelation of ηA of A is

ηA(f) =
1
M

M∑
i=1

ηTiΓN
(f) +

1
volA

∑
(x,y)∈D(A,N)

f(x− y) (5.3)

where D(A,N) is the set of all pairs (x, y) ∈ (A ∩ Λ) × (A ∩ Λ) where the two
components come from different copies of the tile ΓN in its tiling of A.

Since x− y ∈ B is necessary for (x, y) to make any contribution to the sum,
x is restricted to the inner B-boundary of the tile it belongs to and y is restricted
to the ball x + B. Thus∣∣∣∣∣∣ 1

volA

∑
(x,y)∈D(A,N)

δx−y(f)

∣∣∣∣∣∣ < McBp(ΓN )nB ||f ||∞
Mvol(ΓN )

< ε . (5.4)

Thus
|(ηA − η)(f)| < 2ε . (5.5)
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Now consider the van Hove sequence {Am}. Let K be any closed disk centred
on 0 containing ΓN and ΓN . Let A(m) be that part of Am which is composed of
complete ΓN – tiles taken from the full tiling Γ. Then Am\A(m) ⊂ ∂K(Am).

Now the point is that because of the van Hove property the boundary can
contain only a number of points of Λ that is bounded by cKvol(∂KAm) for some
positive constant cK that is independent of m. Thus∣∣∣∣ηAm(f)− volA(m)

volAm
ηA(m)(f)

∣∣∣∣ = ∣∣∣∣ 1
volAm

∑
δx,y(f)

∣∣∣∣
≤ c1

volAm
vol (∂KAm)||f ||∞

(5.6)

where the sum is over all x, y ∈ Γ∩Am in which at least one of x or y is in ∂K(Am).
The van Hove property shows that ηA(m) − ηAm → 0 as m →∞.

Combining this with equation (5.5) we see that |η(f)− ηAm(f)| < 3ε for all
m >> N = N(ε, f). As ε was arbitrary and so was f , we have demonstrated the
proposition. �

6 Further Remarks

We point out that there are (at least) two other approaches to circular symmetry.
For these we consider the space X of all tilings that are locallly indistinguishable
from the pinwheel tiling that we have constructed. These are the tilings each of
whose patches is a copy, under the rotation-translation group of the full Euclidean
group of isometries of the plane, to a patch of the given pinwheel tiling, and
vica-versa. This is evidently closed under the rotation-translation group and in
particular under the translation group of the plane. We give this space the standard
topology [13]. The uniform distribution of orientations allows us to conclude that
X is the closure of the translation orbit of any of its tilings – it is minimal.

The substitution together with the uniform distribution of orientation allows
one to see quite easily that patch frequencies are uniform – the limit defining the
frequency, or density, of a patch of tiles is approached uniformly, independent of the
position or orientation of the patch. It follows from this that the autocorrelation is
identical for all elements of X, and so this measure must be circularly symmetric.

Alternatively one can try to approach the problem by looking at the dynami-
cal spectrum arising from the unitary action of R2 on L2(X, R2, µ), where µ is the
unique ergodic measure on X. The relationship between this and the diffraction is
given by a piece of formalism called Dworkin’s argument [4]. The exact scope of
this relationship is not understood, but it has been successfully used to infer things
about the diffraction spectrum, particularly in the case of pure point diffraction.
It was, for instance, used in the first proofs of the pure point diffractiveness of
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regular model sets. Now, it is the case that in the case of the pinwheel tiling the
dynamical spectrum is circularly symmetric [12] , and so it is conceivable that some
form of Dworkin’s argument might be developed which would allow this result to
be carried over to the diffraction. To our knowledge this has not been explicitly
carried out.
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